Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Data Brief ; 32: 106029, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32775558

RESUMO

This article presents a dataset on nitrate, nitrite and dissolved organic carbon (DOC) losses measured for 4 years using lysimeters at the EFELE long-term experimental site (Le Rheu, France). This ongoing long-term study was designed to provide information on effects of organic waste product (OWP) application and soil tillage on crop production, soil properties, biodiversity, greenhouse gas emissions and water quality. Forty wick-fiber lysimeters were installed at depths of 40 and 90 cm to document effects of organic and/or mineral fertilization, vegetation cover and weather conditions on dynamics of nitrate, nitrite and DOC concentrations of water collected during the drainage season (winter). These data help analyze the effects of winter plant cover (wheat vs. mustard catch crop) on these dynamics and fill a knowledge gap on effects of organic waste product supply on DOC losses. These dynamic data over several years are also of great interest for calibrating and evaluating models (e.g. STICS, APSIM, CERES).

2.
Sci Total Environ ; 749: 141551, 2020 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-32836126

RESUMO

The majority of freshwater ecosystems worldwide suffer from eutrophication, particularly because of agriculture-derived nutrient sources. In the European Union, a discrepancy exists between the scale of regulatory assessment and the size of research catchments. The Water Framework Directive sets water quality objectives at the mesoscale (50-500 km2), a scale at which both hillslope and in-stream processes influence carbon (C), nitrogen (N) and phosphorus (P) dynamics. Conversely, research catchments focus on headwaters to investigate hillslope processes while minimising the influence of river processes on C-N-P dynamics. Because hillslope and river processes have common hydro-climatic drivers, the relative influence of each on C-N-P dynamics is difficult to disentangle at the mesoscale. In the present study, we used repeated synoptic sampling throughout the river network of a 300 km2 intensively farmed catchment, spatial stochastic modelling and mass balance calculations to analyse this mesoscale conundrum. The main objective was to quantify how river processes altered C-N-P hydrochemical dynamics in different flow, concentration and temperature conditions. Our results show that flow was the main control of alterations of C-N-P dynamics in the river network, while temperature and source concentration had little or no influence. The influence of river processes peaked during low flow, with up to 50% of dissolved organic carbon (DOC) production, up to 100% of nitrate (NO3) retention and up to 50% of total phosphorus (TP) retention. Despite high percentages of river processes at low flow, their influence on annual loads was low for NO3 (median of -10%) and DOC (median of +25%) but too variable to draw conclusions for TP. Because of the differing river alteration rates among carbon and nutrients, stoichiometric ratios varied greatly from headwaters to the outlet, especially during the eutrophication-sensitive low-flow season.

3.
Sci Total Environ ; 610-611: 55-63, 2018 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-28802110

RESUMO

This study identified sources of fecal contamination in three different French headwater and coastal catchments (the Justiçou, Pen an Traon, and La Fresnaye) using a combination of microbial source tracking tools. The tools included bacterial markers (three host-associated Bacteroidales) and chemical markers (six fecal stanols), which were monitored monthly over one or two years in addition to fecal indicator bacteria. 168 of the 240 freshwater and marine water samples had Escherichia coli (E. coli) or enterococci concentrations higher than "excellent" European water quality threshold. In the three catchments, the results suggested that the fecal contamination appeared to be primarily from an animal origin and particularly from a bovine origin in 52% (Rum2Bac) and 46% (Bstanol) of the samples and to a lesser extent from a porcine origin in 19% (Pig2Bac) and 21% (Pstanol) of the samples. Our results suggested a human fecal contamination in 56% (HF183) and 32% (Hstanol) of the samples. Rainfall also impacted the source identification of microbial contamination. In general, these findings could inform effective implementation of microbial source tracking strategies, specifically that the location of sampling points must include variability at the landscape scale.


Assuntos
Monitoramento Ambiental/métodos , Microbiologia da Água , Poluição da Água/análise , Animais , Bacteroidetes , Bovinos , Escherichia coli , Fezes/microbiologia , Humanos , Suínos , Qualidade da Água
4.
Chemosphere ; 194: 125-130, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29197815

RESUMO

Cigarette butts (CGB) are equivalent to plastic litter in terms of number of pieces released directly into the environment. Due to their small size and social use, CGB are commonly found in natural systems, and several questions have been raised concerning the contaminants that are released with CGB, including metals, organic species, and nanoparticles. The aim of the present study is to investigate the release of nanoscale particles from CGB by leaching with rainwater. After seven days of passive stirring of both smoked and unsmoked CGB in synthetic rainwater, the solutions were treated and analyzed by specific nano-analytical methods. Our results demonstrate the release of 4.12 ± 0.24% (w/CGB) organic carbon in the range of 10 nm up to 400 nm and with a z-average diameter of 202.4 ± 74.1 nm. The fractal dimension (Df) of the nanoscale particles ranges from 1.14 to 1.52 and suggests a soot (carbon)-based composition. The analysis of some metallic species (As, Pb, Cd, Cu, Ni, Cr, Co, Al, Mn, Zn, and Fe) shows that these species are essentially attached to the nanoscale particles per gram of carbon released. By considering the diffusion of the nanomaterials into different environmental compartments, our results suggest a new emerging and global contamination of the environment by cigarette butts, comparable to plastic litter, which urgently needs to be considered.


Assuntos
Monitoramento Ambiental/métodos , Poluição Ambiental , Nanopartículas/efeitos adversos , Produtos do Tabaco/efeitos adversos , Carbono , Metais/análise , Metais Pesados/análise , Fumaça
5.
Sci Total Environ ; 598: 421-431, 2017 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-28448934

RESUMO

In agricultural landscapes, establishment of vegetated buffer zones in riparian wetlands (RWs) is promoted to decrease phosphorus (P) emissions because RWs can trap particulate P from upslope fields. However, long-term accumulation of P risks the release of dissolved P, since the unstable hydrological conditions in these zones may mobilize accumulated particulate P by transforming it into a mobile dissolved P species. This study evaluates how hydroclimate variability, topography and soil properties interact and influence this mobilization, using a three-year dataset of molybdate-reactive dissolved P (MRDP) and total dissolved P (TDP) concentrations in soil water from two RWs located in an agricultural catchment in western France (Kervidy-Naizin), along with stream P concentrations. Two main drivers of seasonal dissolved P release were identified: i) soil rewetting during water-table rise after dry periods and ii) reductive dissolution of soil Fe (hydr)oxides during prolonged water saturation periods. These mechanisms were shown to vary greatly in space (according to topography) and time (according to intra- and interannual hydroclimate variability). The concentration and speciation of the released dissolved P also varied spatially depending on soil chemistry and local topography. Comparison of sites revealed a similar correlation between soil P speciation (percentage of organic P ranging from 35-70%) and the concentration and speciation of the released P (MRDP from <0.10 to 0.40mgl-1; percentage of MRDP in TDP from 25-70%). These differences propagated to stream water, suggesting that the two RWs investigated were the main sources of dissolved P to streams. RWs can be critical areas due to their ability to biogeochemically transform the accumulated P in these zones into highly mobile and highly bioavailable dissolved P forms. Hydroclimate variability, local topography and soil chemistry must be considered to decrease the risk of remobilizing legacy soil P when establishing riparian buffer zones in agricultural landscapes.

6.
Mar Pollut Bull ; 89(1-2): 40-48, 2014 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-25455370

RESUMO

In this study, the capacity of oysters to bioaccumulate fecal stanols and to record a source-specific fingerprint was investigated by the short-term contamination of seawater microcosms containing oysters with a human effluent. Contaminated oysters bioaccumulated the typical fecal stanols coprostanol and 24-ethylcoprostanol and their bioaccumulation kinetics were similar to that of the Fecal Indicator Bacteria Escherichia coli used in European legislation. Although stanol fingerprints of contaminated water allowed the identification of the human specific fingerprint, this was not the case for oysters. This discrepancy is attributed to (i) high concentrations of endogenous cholestanol and sitostanol, responsible for "unbalanced" stanol fingerprints, (ii) different accumulation/depuration kinetics of fecal coprostanol and 24-ethylcoprostanol and (iii) the limits of the analytical pathway used. These results show that fecal stanols bioaccumulated by oysters are useful to record fecal contamination but the usefulness of stanol fingerprints to identify specific sources of contamination in shellfish currently seems limited.


Assuntos
Colestanol/análise , Monitoramento Ambiental/métodos , Fezes/química , Contaminação de Alimentos/análise , Ostreidae/química , Frutos do Mar , Sitosteroides/análise , Poluição da Água/análise , Animais , Escherichia coli/isolamento & purificação , Fezes/microbiologia , Humanos , Ostreidae/microbiologia , Água do Mar/química , Água do Mar/microbiologia
7.
Lipids ; 49(6): 597-607, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24771549

RESUMO

The objective of this work was to study the effects of washing and purification steps on qualitative and quantitative analysis of fecal stanols in the oyster Crassostrea gigas using either single or a combination of lipid purification steps on silica gel or aminopropyl bonded silica gel (NH2) or a washing step. Among the three analytical pathways compared, the two including water extraction or NH2 purification did not lead to higher recoveries and decreased repeatabilities of extractions compared to the single purification on silica gel. This latter led to similar recoveries (ca. 80%) and repeatabilities (ca. 10%) for both spiked standards (coprostanol and sitostanol). This analytical pathway has been applied to oysters collected in a harvesting area in Brittany (France) where fecal contaminations are important and allowed to quantify eight stanols in oysters. The relative proportions of fecal stanols of these oysters were combined with principal component analysis in order to investigate the usefulness of their stanol fingerprints to record a fecal contamination and to distinguish its source between human, porcine and bovine contaminations. Oysters non-fecally contaminated by Escherichia coli did not present specific stanol fingerprints while oysters fecally contaminated had a bovine fingerprint, suggesting a contamination of these samples by bovine sources. As a consequence, the method developed here allows the use of stanol fingerprints of oysters as a microbial source tracking tool that can be applied to shellfish harvesting areas subjected to fecal contaminations in order to identify the different sources of contamination and improve watershed management.


Assuntos
Colestanóis/química , Crassostrea/metabolismo , Fezes/química , Sitosteroides/química , Poluentes Químicos da Água/química , Animais , Colestanóis/isolamento & purificação , Colestanóis/metabolismo , Crassostrea/microbiologia , Escherichia coli/isolamento & purificação , Fezes/microbiologia , França , Cromatografia Gasosa-Espectrometria de Massas/normas , Análise de Perigos e Pontos Críticos de Controle , Humanos , Extração Líquido-Líquido/normas , Análise de Componente Principal , Padrões de Referência , Esgotos/química , Esgotos/microbiologia , Sitosteroides/isolamento & purificação , Sitosteroides/metabolismo , Microbiologia da Água , Poluentes Químicos da Água/isolamento & purificação , Poluentes Químicos da Água/metabolismo
8.
J Colloid Interface Sci ; 314(2): 490-501, 2007 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-17692327

RESUMO

Aerobic and anaerobic incubation experiments on a wetland soil samples were used to assess the respective roles of organic matter (OM) release, Fe-oxyhydroxides reduction and redox/speciation changes on trace metal mobility during soil reduction. Significant amounts of Cu, Cr, Co, Ni, Pb, U, Th and Rare Earth Elements (REE) were released during anaerobic incubation, and were accompanied by strong Fe(II) and dissolved organic matter (DOM) release. Aerobic incubation at pH 7 also resulted in significant trace metal and DOM release, suggesting that Fe-oxyhydroxide reduction is not the sole mechanism controlling trace metal mobility during soil reduction. Using these results and redox/speciation modeling, four types of trace metal behavior were identified: (i) metals bound to organic matter (OM) and released by DOM release (REE); (ii) metals bound to both OM and Fe-oxyhydroxides, and released by the combined effect of DOM release and Fe(III) reduction (Pb and Ni); (iii) metals bound solely to soil Fe-oxyhydroxides and released by its reductive dissolution (Co); and (iv) metals for which release mechanisms are unclear because their behavior upon reduction is affected by changes in redox state and/or solution speciation (Cu, Cr, U and Th). Even though the process of soil Fe-oxyhydroxide reduction is important in controlling metal mobility in wetland soils, the present study showed that the dominant mechanism for this process is OM release. Thus, OM should be systematically monitored in experimental studies dedicated to understand trace metal mobility in wetland soils. Due to the fact that the process of OM release is mainly controlled by pH variations, the pH is a more crucial parameter than Eh for metal mobility in wetland soils.


Assuntos
Hidróxidos/química , Ferro/química , Metais/análise , Oligoelementos/análise , Adsorção , Química Orgânica/métodos , Físico-Química/métodos , Monitoramento Ambiental/métodos , Concentração de Íons de Hidrogênio , Movimento , Oxirredução , Solo , Poluentes do Solo/química , Áreas Alagadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...